First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices.

نویسندگان

  • Tao Li
  • Ya-Jun Hu
  • Zhi-Peng Hao
  • Hong Li
  • You-Shan Wang
  • Bao-Dong Chen
چکیده

Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the molecular basis for the direct involvement of AM fungi (AMF) in plant water relations has not been established. Two full-length aquaporin genes, namely GintAQPF1 and GintAQPF2, were cloned by rapid amplification of cDNA 5'- and 3'-ends from an AMF, Glomus intraradices. Aquaporin localization, activities and water permeability were examined by heterologous expression in yeast. Gene expression during symbiosis was also analyzed by quantitative real-time polymerase chain reaction. GintAQPF1 was localized to the plasma membrane of yeast, whereas GintAQPF2 was localized to both plasma and intracellular membranes. Transformed yeast cells exhibited a significant decrease in cell volume on hyperosmotic shock and faster protoplast bursting on hypo-osmotic shock. Polyethylene glycol (PEG) stimulated, but glycerol inhibited, the aquaporin activities. Furthermore, the expression of the two genes in arbuscule-enriched cortical cells and extraradical mycelia of maize roots was also enhanced significantly under drought stress. GintAQPF1 and GintAQPF2 are the first two functional aquaporin genes from AMF reported to date. Our data strongly support potential water transport via AMF to host plants, which leads to a better understanding of the important role of AMF in plant drought tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices.

In the symbiotic association of plants and arbuscular mycorrhizal (AM) fungi, the fungus delivers mineral nutrients, such as phosphate and nitrogen, to the plant while receiving carbon. Previously, we identified an NH(4)(+) transporter in the AM fungus Glomus intraradices (GintAMT1) involved in NH(4)(+) uptake from the soil when preset at low concentrations. Here, we report the isolation and ch...

متن کامل

The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores.

Two isolates of Paenibacillus validus (DSM ID617 and ID618) stimulated growth of the arbuscular mycorrhizal fungus Glomus intraradices Sy167 up to the formation of fertile spores, which recolonize carrot roots. Thus, the fungus was capable of completing its life cycle in the absence of plant roots, but relied instead on the simultaneous growth of bacteria. The supernatant of a mixed batch cultu...

متن کامل

Density dependence and interspecific interactions between arbuscular mycorrhizal fungi mediated plant growth, glomalin production, and sporulation

Functional differences between the arbuscular mycorrhizal fungi Glomus intraradices Schenk and Smith and Scutellospora heterogama Nicolson and Gerdemann as they affect Persea americana Mill. growth, glomalin, and fungal sporulation were examined by varying the composition and relative density of the two fungi over a gradient of available phosphorus (P). The plant benefit provided by these mycor...

متن کامل

Effect of arbuscular mycorrhizal fungus, plant growth promoting rhizobacterium, and soil drying on different forms of potassium and clay mineral changes in a calcareous soil under maize planting

ABSTRACT- Greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the effect of Glomus intraradices, Pseudomonas fluorescence and soil drying on different forms of potassium (K) and the changes of clay minerals in a calcareous soil after maize planting. Treatments consisted of arbuscular mycorrhizal (AM) fungus at two levels: G0 (...

متن کامل

The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes.

The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 197 2  شماره 

صفحات  -

تاریخ انتشار 2013